
2026/02/03 09:00 1/7 18. 資訊隱藏與封裝

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

國立屏東大學 資訊工程學系 物件導向程式設計

18. 資訊隱藏與封裝

Information Hiding
Encapsulation
Access modifiers
Setters and Getters

在物件導向程式設計裡面有兩個很重要的概念，就是資訊隱藏(information hiding)和封裝(encapsulation)。
資訊隱藏是指當一個物件被外界存取的時候，外界無法得知物件內部的運作方式，或者是物件內部使用了
哪些私有的資料成員和函式成員。而封裝指的是因為外界無法得知物件內部情形，只能使用物件提供給外
界存取的函式，就好像一台有外殼包裝的機器，您只能看到按鈕，看不到裡面的電路板。

要做到資訊隱藏(information hiding)可以使用存取修飾字，讓物件的使用者無法存取內部的資料項目與方
法。至於封裝(encapsulation)，則可以透過設計供外界使用的界面來完成。

18.1 存取修飾字

要達到資訊隱藏和封裝，就一定要了解C++如何控制類別成員(包含資料成員與成員函式)的存取權
限。public、protected和private這三個存取修飾字(access modifier)是C++用來控制存取權限的識別字。

就如同字面上的意思，這三個access modifier的意思分別是公開的、被保護的和私有的，分別有著不同的
程度的保護層級。

public是指對存取權限完全的公開，任何物件都可以存取。
protected的存取是受限的，除了類別自己可以使用外，只有其成員函式與類別的朋友(friend)以及
子類別可以存取(關成員函式的朋友及朋友類別後續會再行說明)。
private是限制最嚴格的access modifier，只有在類別本身內部可以存取。

我們將C++語言提供的三個存取修飾字：public、protected與private，再加上不使用修飾字的話共有四種情
形，彙整於table 1

位置 private protected public 不使用修飾字

同一個類別中 v v v v
朋友類別 v v v v
子類別 v v
其它類別 v
Tab. 1: Access Modifiers and Accessibility

18.2 類別定義與存取控制

一般來說，我們都會將類別的資料成員和某些只供內部使用的成員函式設為private，然後開放一些成員函
式做為和外界溝通的介面，依開放權限的程度可設定這些成員函式為public或者是protected。這樣做的好

https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:encapsulation#tab_accessmodifier

Last update: 2022/05/05 15:26 cpp:encapsulation https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:encapsulation

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/02/03 09:00

處就是可以讓類別內部的程式修改不會影響到其它的類別，而其它外界類別因為無法存取類別內部的資料
成員，也可以減少不可預知的程式錯誤，進而控制程式除錯的範圍。

我們把定義類別的語法，增加存取修飾字(access modifier)，來限制資料成員與成員函式的使用，其語法
如下：

class className
{
private:
 資料成員或成員函式定義;

protected:
 資料成員或成員函式定義;

public:
 資料成員或成員函式定義;
}

注意，若呼略存取修飾字，則所定義的資料成員或成員函式之權限為private。

18.3 供外部使用的界面: Setters and Getters

適當地定義存取權限，讓其它程式只能透過我們所開放的method來存取資料成員，可以確保程式碼的正
確性與安全性。如果想開放資料成員的存取，我們通常會設計成public的setXXX()與getXXX()成員函式來
讓他人使用。

setters又稱為Mutators，其成員函式命名通常為setXXX()，或是set_XXX()。
getters又稱為Accessors，其成員函式命名通常為getXXX()，或是get_XXX()。

現在，我們再將Person類別修改如下：

#ifndef _PERSON_
#define PERSON

class Person
{
private:
 string firstname;
 string lastname;

public:
 Person();
 Person(string, string);
 void showInfo();

 void set_firstname(string fn);
 string get_firstname();

2026/02/03 09:00 3/7 18. 資訊隱藏與封裝

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

 void set_lastname(string ln);
 string get_lastname();
};
#endif

#include <iostream>
#include "person.h"
using namespace std;

Person::Person()
{
}

Person::Person(string fn, string ln)
{
 firstname=fn;
 lastname=ln;
}

void Person::showInfo()
{
 cout << "Name: " << firstname << " " << lastname << endl;
}

void Person::set_firstname(string fn)
{
 firstname=fn;
}

void Person::set_lastname(string ln)
{
 lastname=ln;
}

string Person::get_firstname()
{
 return firstname;
}

string Person::get_lastname()
{
 return lastname;
}

Last update: 2022/05/05 15:26 cpp:encapsulation https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:encapsulation

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/02/03 09:00

#include <iostream>
#include "person.h"
using namespace std;

int main()
{
 Person *amy = new Person;

 amy->set_firstname("Amy");
 amy->set_lastname("Chang");

 cout << amy->get_firstname() << " " << amy->get_lastname() << endl;
 return 0;
}

18.4 this指標

讓我們設想一個情形，假設每個「Person」類別的物件有除了名字之外，還有一個「int age」的資料成員，並
且我們想要寫一個成員函式「compare()」用以比較兩個「Person」類別的物件誰的年齡比較大：

#ifndef _PERSON_
#define PERSON

class Person
{
private:
 string firstname;
 string lastname;
 int age;

public:
 Person();
 Person(string, string);
 void showInfo();

 void set_firstname(string fn);
 string get_firstname();

 void set_lastname(string ln);
 string get_lastname();

 void set_age(int a);
 int get_age();

 Person *compareAge(Person *p2);

2026/02/03 09:00 5/7 18. 資訊隱藏與封裝

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

 Person &compareAge(Person &p2);
};
#endif

#include <iostream>
#include "person.h"
using namespace std;

Person::Person()
{
}

Person::Person(string fn, string ln)
{
 firstname=fn;
 lastname=ln;
}

void Person::showInfo()
{
 cout << "Name: " << firstname << " " << lastname << endl;
}

void Person::set_firstname(string fn)
{
 firstname=fn;
}

void Person::set_lastname(string ln)
{
 lastname=ln;
}

string Person::get_firstname()
{
 return firstname;
}

string Person::get_lastname()
{
 return lastname;
}

void Person::set_age(int a)
{
 age =a;
}

Last update: 2022/05/05 15:26 cpp:encapsulation https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:encapsulation

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/02/03 09:00

int Person::get_age()
{
 return age;
}

Person * Person::compareAge(Person *p2)
{
 if(age>(p2->age))
 return this;
 else
 return p2;
}

Person & Person::compareAge(Person &p2)
{
 if(age>(p2.age))
 return *this;
 else
 return p2;
}

#include <iostream>
#include "person.h"
using namespace std;

int main()
{
 Person *amy = new Person;
 Person *tony = new Person;

 amy->set_firstname("Amy");
 amy->set_lastname("Chang");
 amy->set_age(20);

 tony->set_firstname("Tony");
 tony->set_lastname("Wang");
 tony->set_age(10);

 Person *older;

 older = amy->compareAge(tony);
 cout << older->get_firstname() << " "
 << older->get_lastname() << " is older." << endl;

 delete amy;
 delete tony;

 Person p1, p2;

2026/02/03 09:00 7/7 18. 資訊隱藏與封裝

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

 p1.set_firstname("p");
 p1.set_lastname("1");
 p1.set_age(30);
 p2.set_firstname("p");
 p2.set_lastname("2");
 p2.set_age(45);

 Person &p3=p2;
 p3=p1.compareAge(p2);
 cout << p3.get_firstname() << " "
 << p3.get_lastname() << " is older." << endl;
 return 0;
}

From:
https://junwu.nptu.edu.tw/dokuwiki/ - Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

Permanent link:
https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:encapsulation

Last update: 2022/05/05 15:26

https://junwu.nptu.edu.tw/dokuwiki/
https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:encapsulation

	18. 資訊隱藏與封裝
	18.1 存取修飾字
	18.2 類別定義與存取控制
	18.3 供外部使用的界面: Setters and Getters
	18.4 this指標

