
2026/01/14 00:57 1/21 3. C++基礎語法

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

國立屏東商業技術學院 資訊工程系 物件導向程式設計

3. C++基礎語法

由於C++語言是奠基於C語言之上，因此我們不針對基礎的語法進行介紹，僅就C++不同於C語言之處，
做一要簡要的介紹。在開始之前，先讓我們瞭解C++語言與C語言的第一個差異：標準輸入與輸出。

3.1 標準輸入與輸出

標準輸入與輸出(standard input/output)，大概是許多學過C語言的同學，在學習C++時最不能適應的地方。
其實，C++的做法讓輸出與輸出變得更為簡單，只要用習慣就會喜歡上這種寫法。在使用C語言時，由
於printf在輸出資料時必須自行指定型態(透過format specifier)，可能因程式設計師的指定錯誤，而導致錯
誤的輸出結果。但在C++中的cout，會自動判斷變數型態，因此較為安全與方便。

原本在C語言中，以#include <stdio.h>所載入的標準輸出入標頭檔，在C++中改成使用#include
<iostream>與using namespace std，並且以cout進行輸出，以cin取得使用者的資料。

using namespace std;
#include <iostream>

int main()
{
 int a;
 char s [100];

 cout << "This is a sample program." << endl;

 cout << endl;

 cout << "Type your age : ";
 cin >> a;

 cout << "Type your name: ";
 cin >> s;

 cout << endl;

 cout << "Hello " << s << " you're " << a << " old." << endl;
 cout << endl << endl << "Bye!" << endl;

 return 0;
}

最後，要提醒同學，原本在C語言中的printf()與scanf()函式，在C++中仍可以使用。不過在我們的例子中，
將儘量使用新的cout與cin來代替。

Last update: 2019/07/02 15:01 cpp:fromctocpp https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/14 00:57

3.2 命名空間與函式標頭檔

C++語言使用命名空間(namespace)來管理在其函式/類別庫中眾多的識別字名稱，其中std是我們已經使
用過的一個namespace，你可以試著將程式中using namespace std;這行移除，再編譯程式看看，是不是
會發現許多編譯的錯誤？其原因是包含endl, cout等，皆命名於std這個命名空間中，如果不先行載入此命
名空間，則每次使用時都必須以std::endl, std::cout等方式清楚說明欲使用的識別字位於哪個命名空間中。
除此之外，我們也可以宣告自己的namespace:

using namespace std;
#include <iostream>
#include <cmath>

namespace first
{
 int a;
 int b;
}

namespace second
{
 double a;
 double b;
}

int main ()
{
 first::a = 2;
 first::b = 5;

 second::a = 6.453;
 second::b = 4.1e4;

 cout << first::a + second::a << endl;
 cout << first::b + second::b << endl;

 return 0;
}

若是要使用原本C語言的各種函式，其對應的標頭檔案當然也必須載入，不過要注意以下兩點：

其它需要載入的標頭檔，仍使用#include載入，但.h的副檔名已不再使用1.
傳統的C語言函式標頭檔，則以字元c開頭2.

using namespace std; // 載入標準函式庫
#include <iostream> // 載入與輸出輸入相關
#include <cmath> // 載入傳統的C語言函式庫標頭檔

int main ()

2026/01/14 00:57 3/21 3. C++基礎語法

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

{

 double a;
 a = 1.2;
 a = sin (a);

 cout << a << endl;
 return 0;
}

3.3 變數與常數

3.3.1 變數

C++語言變數命名具備以下規定：
只能使用英文大小寫字母、數字與底線(_)
不能使用數字開頭
大寫與小寫字元將視為不同字元
不能與C++語言的保留字相同
在C++的實作中，以一個底線開頭後接一個大寫字母，或是以兩個底線開頭的變數，被保留
做為C++的實作用途(供編譯器及其相關資源使用)。因此，使用這樣的命名並不會造
成compiler的錯誤，但有可能造成執行上的錯誤。

C++語言共有以下84個保留字:

alignas alignof and and_eq asm auto bitand
bitor bool break case catch char char16_t
char32_t class compl const constexpr const_cast continue
decltype default delete do double dynamic_cast else
enum explicit export extern false float for
friend goto if inline int long mutable
namespace new noexcept not not_eq nullptr operator
or or_eq private protected public register reinterpret_cast
return short signed sizeof static static_assert static_cast
struct switch template this thread_local throw true
try typedef typeid typename union unsigned
using virtual void volatile wchar_t while xor
xor_eq

變數可以在任何地方加以宣告，只要在第一次使用前完成宣告即可。

using namespace std;
#include <iostream>

int main ()

Last update: 2019/07/02 15:01 cpp:fromctocpp https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/14 00:57

{
 double a;

 cout << "Hello, this is a test program." << endl;

 cout << "Type parameter a: ";
 cin >> a;

 a = (a + 1) / 2;

 double c;

 c = a * 5 + 1;

 cout << "c contains : " << c << endl;

 int i, j;

 i = 0;
 j = i + 1;

 cout << "j contains : " << j << endl;

 return 0;
}

我們可以利用這個C++的特性，將程式寫的更有彈性。請參考下面這個程式：

using namespace std;
#include <iostream>

int main ()
{
 double a;

 cout << "Type a number: ";
 cin >> a;

 {
 int a = 1;
 a = a * 10 + 4;
 cout << "Local number: " << a << endl;
 }

 cout << "You typed: " << a << endl;

 return 0;
}

2026/01/14 00:57 5/21 3. C++基礎語法

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

此外，C++還允許我們在宣告變數時，使用別的變數做為初始值設定的一部份，請參考下面這個程式：

using namespace std;
#include <iostream>

int main ()
{
 double a = 12 * 3.25;
 double b = a + 1.112;

 cout << "a contains: " << a << endl;
 cout << "b contains: " << b << endl;

 a = a * 2 + b;

 double c = a + b * a;

 cout << "c contains: " << c << endl;

 return 0;
}

我們也可以在迴圈中宣告變數，其生命週期就僅限於迴圈內，請參考下面的程式：

using namespace std;
#include <iostream>

int main ()
{
 int i; // Simple declaration of i
 i = 487;

 for (int i = 0; i < 4; i++) // Local declaration of i
 {
 cout << i << endl; // This outputs 0, 1, 2 and 3
 }

 cout << i << endl; // This outputs 487

 return 0;
}

若在區域內的變數與某個全域變數名稱相同，只要加上“::“就可以在區域內使用，請參考下面的程式：

using namespace std;

Last update: 2019/07/02 15:01 cpp:fromctocpp https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/14 00:57

#include <iostream>

double a = 128;

int main ()
{
 double a = 256;

 cout << "Local a: " << a << endl;
 cout << "Global a: " << ::a << endl;

 return 0;
}

3.3.2 常數

以const宣告之變數，其值不能被變更，稱為常數。例如：

const double radius = 5.5;

也可以用#define這一個preprocessor directive來定義常數。例如:

#define PI 3.1415926

3.3.3 新的變數初始值給定方式

C++提供了新的變數初始值給定的方法，

type valName = value;
type valName(value);
type valName = {value};
type valName{value};

其中最後一種宣告的方法，是在C++11的標準才開始提供，所以在編譯時必須要使用「-std=gnu++11」的
選項才能順利的編譯。請參考下面的例子：

using namespace std;
#include <iostream>

int main()
{
 int i = 3;
 int j (4);
 int k = {5};

2026/01/14 00:57 7/21 3. C++基礎語法

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

 int l {6};

 cout << "i=" << i << endl;
 cout << "j=" << j << endl;
 cout << "k=" << k << endl;
 cout << "l=" << l << endl;

 return 0;
}

上述這個程式的編譯與執行畫面如下：

[03:39 user@ws ch3]$ g++ -std=gnu++11 newVarInitial.cpp
[03:39 user@ws ch3]$./a.out
i=3
j=4
k=5
l=6
[03:39 user@ws ch3]$

新的宣告方式，還提供了型態安全的檢查，我們將上面的程式修改如下：

using namespace std;
#include <iostream>

int main()
{
 int i = 3.5;
 int j (4.5);
 int k = {5.5};
 int l {6.5};
 char x {332};

 cout << "i=" << i << endl;
 cout << "j=" << j << endl;
 cout << "k=" << k << endl;
 cout << "l=" << l << endl;

 return 0;
}

其編譯結果如下：

[03:52 user@ws ch3]$ g++ -std=gnu++11 newVarInitial2.cpp
newVarInitial2.cpp: In function ‘int main()’:

Last update: 2019/07/02 15:01 cpp:fromctocpp https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/14 00:57

newVarInitial2.cpp:8:15: warning: narrowing conversion of ‘5.5e+0’ from
‘double’ to ‘int’ inside { } [-Wnarrowing]
newVarInitial2.cpp:9:13: warning: narrowing conversion of ‘6.5e+0’ from
‘double’ to ‘int’ inside { } [-Wnarrowing]
newVarInitial2.cpp:10:14: warning: narrowing conversion of ‘332’ from ‘int’
to ‘char’ inside { } [-Wnarrowing]
newVarInitial2.cpp:10:14: warning: overflow in implicit constant conversion
[-Woverflow]
[03:53 user@ws ch3]$./a.out
i=3
j=4
k=5
l=6
[03:53 user@ws ch3]$

注意到了嗎？新的「{}」方式還會進行型態安全的檢查。我們將「{}」這種宣告初始值的方法稱為List
Initialization。當「{}」內沒有提供初始值時，編譯器會以0做為初始值。

最後C++還提供了一種新的宣告方式：

auto valName = value;
auto valName (value);
auto valName = {value};
auto valName {value};

使用「auto」是讓編譯器視變數的初始值，自動決定適切的資料型態。

3.4 資料型態

C++語言提供多種資料型態，包含基本型態(fundamental type)與複合資料型態(compound type)兩類。
本章僅就基本型態做一說明，複合型態請參閱後續章節。

3.4.1 整數型態

C++語言一共有以下8種整數型態：

Standard signed integer types (標準符號整數型態)
short int
int
long int
long long int

Standard unsigned integer types (標準無符號整數型態)
unsigned short int
unsigned int
unsigned long int
unsigned long long int

2026/01/14 00:57 9/21 3. C++基礎語法

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

<note important>

型態也可以縮寫?

我們在宣告整數型態的變數時，可以將int省略，例如:可以short來代表short int、以unsigned代表unsigned
int、以long代表long int、long long代表long long int；以及unsigned short代表unsigned short
int、unsigned long代表unsigned long int、unsigned long long代表unsigned long long int。

</note> 在整數型態的數值範圍方面，都是取決於其所使用的記憶體空間。由於不同平台上可能會有差異，
C++語言僅提供規範，實際情形由各平台上的實作決定。因此，在一個平台上撰寫程式時，我們通常會使
用以下的程式，先行瞭解各型態所佔的空間：

#include <iostream>
#include <climits> // use limits.h

int main()
{
 using namespace std;
 int n_int = INT_MAX; // initialize n_int to max int value
 short int n_short = SHRT_MAX; // symbols defined in climits file
 long int n_long = LONG_MAX;
 long long int n_llong = LLONG_MAX;

 // sizeof operator yields size of type or of variable
 cout << "int is " << sizeof (int) << " bytes." << endl;
 cout << "short is " << sizeof n_short << " bytes." << endl;
 cout << "long is " << sizeof n_long << " bytes." << endl;
 cout << "long long is " << sizeof n_llong << " bytes." << endl;
 cout << endl;

 cout << "Maximum values:" << endl;
 cout << "int: " << n_int << endl;
 cout << "short: " << n_short << endl;
 cout << "long: " << n_long << endl;
 cout << "long long: " << n_llong << endl << endl;

 cout << "Minimum int value = " << INT_MIN << endl;
 cout << "Bits per byte = " << CHAR_BIT << endl;

 return 0;
}

以我們的ws.csie.npic.edu.tw工作站為例，limits.cpp的執行結果如下：

[09:52 junwu@ws ch4]$ g++ limits.cpp
[09:52 junwu@ws ch4]$./a.out
int is 4 bytes.

Last update: 2019/07/02 15:01 cpp:fromctocpp https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/14 00:57

short is 2 bytes.
long is 8 bytes.
long long is 8 bytes.

Maximum values:
int: 2147483647
short: 32767
long: 9223372036854775807
long long: 9223372036854775807

Minimum int value = -2147483648
Bits per byte = 8
[09:52 junwu@ws ch4]$

上述程式，主要使用了sizeof()函式以及位在climits標頭檔中的定義，有關climits標頭檔，可
至/usr/include/c++目錄下查詢。下表為climits中所定義的部份常數：

Symbolic Constant Represents
CHAR_BIT Number of bits in a char
CHAR_MAX Maximum char value
CHAR_MIN Minimum char value
SCHAR_MAX Maximum signed char value
SCHAR_MIN Minimum signed char value
UCHAR_MAX Maximum unsigned char value
SHRT_MAX Maximum short value
SHRT_MIN Minimum short value
USHRT_MAX Maximum unsigned short value
INT_MAX Maximum int value
INT_MIN Minimum int value
UINT_MAX Maximum unsigned int value
LONG_MAX Maximum long value
LONG_MIN Minimum long value
ULONG_MAX Maximum unsigned long value
LLONG_MAX Maximum long long value
LLONG_MIN Minimum long long value
ULLONG_MAX Maximum unsigned long long value
Tab. 1: 在climits中定義的常數

3.4.2 浮點數

C++語言中有3種符點數的型態：float, double與long double，分別實作了 IEEE 754當中的單精確度、倍
精確度與擴充精確度：

float: 單精確度浮點數(single-precision floating-point)
double: 倍精確度浮點數(double-precision floating-point)
long double: 擴充精確度符點數(extended-precision floating-point)

https://en.wikipedia.org/wiki/IEEE 754
https://en.wikipedia.org/wiki/IEEE 754

2026/01/14 00:57 11/21 3. C++基礎語法

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

3.4.3 字元型態

所謂的字元型態就是用以表示文字、符號等資料，在C/C++語言中只有一種字元型態：

char

在不同的系統中，字元的數值可能會代表不同意義，視其所採用的字元集(character set)而定。現行最常
見的字元集為ASCII(American Standard Code for Information Interchange)，請參考Wikipedia關於ASCII的
說明。

既然char型態就是整數，那可不可以再配合unsigned使用呢？因為char型態的整數數值是用以對應特定的
字元集(如ASCII)，而每個字元集都有其可表達的字元個數要求，C++語言會自動將char定義為singed
或unsigned以符合字元集的需求。因此我們通常不會特別在char前加上unsigned。但是，如果您有某些較
小的整數資料要處理，就可以考慮使用char來代替int。因為int為32 bits，甚至short int也要使用到16 bits，
若您只需要處理一些介於-128到127之間的數值，那您就可以考慮改用char來代替int；或是宣告為unsigned
char來處理那些介於0到255的正整數資料。

3.4.4 布林型態

布林型態為C++所新增的資料型態，其名稱為bool。一個bool型態的資料只可能有true或false兩種可能的
數值。與傳統的C語言一樣，若你要以整數來表達bool型態的值，則以0表示false，其它非0的值皆視為true。

bool isQuit = false;

int continueProcess = true; // 將true轉換為1

3.4.5 資料型態轉換

如果在程式碼中，我們想要把某個數值之型態加以轉換，可以使用顯示型態轉換(explicit conversion)來對
數值進行強制的轉型(casting)。使用的方法很簡單，只要在想要轉型的數值前加上一組()其中指定欲轉換的
型態即可，例如:

int x;
long int y;

y=(long)x;
y = (long)(x+837);
x = (int)sizeof(int);

3.5 運算子

http://zh.wikipedia.org/wiki/ASCII
http://zh.wikipedia.org/wiki/ASCII
http://zh.wikipedia.org/wiki/ASCII
http://zh.wikipedia.org/wiki/ASCII
http://zh.wikipedia.org/wiki/ASCII

Last update: 2019/07/02 15:01 cpp:fromctocpp https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/14 00:57

3.5.1 算術運算子

算術運算子就如同我們一般在數學式子中，所使用的運算符號，例如加減乘除等。table 2為C/C++語言支
援的算術運算子：

operator 意義 unary/binary
+ 正 unary
- 負 unary
+ 加法 binary
- 減法 binary
* 乘法 binary
/ 除法 binary
% 餘除 binary
Tab. 2: Arithmetic Operators

3.5.2 指定運算子

等號「=」被稱為C/C++語言的指定運算子(assignment operator)，用以將等號右方的值指定(assign)給等
號左方，我們將其稱為是右關聯(right associativity)的運算子。例如：

i = 5;
j = i;
k = 10 * i + j;

要注意的是，若等號左右兩邊的資料型態不一致時，C/C++語言會進行自動的型態轉換，例如:

假設宣告有：

int i;
float j;

i = 83.34f; // i = 83

j = 136; // j=136.0

在一個運算式中，有時可以出現一個以上的等號，例如:

i = j = k = 0;

等同於

k=0;1.
j=(k=0);2.
i=(j=(k=0));3.

請考慮以下的程式片段，想想看其輸出結果為何？

i = 1;
k = 1 + (j=i);

https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp#tab_arithmetic

2026/01/14 00:57 13/21 3. C++基礎語法

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

cout << i << ", " << j << ", " << k << endl;

3.5.3 複合指定運算子

假設i=3，考慮以下的運算式：

i = i + 2;

其結果是先進行等號右邊的運算，得到結果為5後，將數值5給定到等號左邊的變數i，因此，最後i的值等
於5。針對這種情形，C/C++語言提供複合指定(compound assignment)運算子，例如 「+=」，上面的運
算式可重寫為:

i += 2;

其它常見的複合指定運算子，還有 -=, *=, /=與 %=。這些複合指定運算子為右關聯，請考慮下列的運算式：

i += j += k;

等同於

i += (j += k);

3.5.4 遞增與遞減運算子

當我們需要將某個變數的值遞增時，可以寫做：

i = i + 1; 或 i += 1;

但是C/C++語言還提供++與--這兩個運算子，分別是

++，遞增(increment)運算子
--，遞減(decrement)運算子

我們可以把i=i+1或i+=1，改寫為：

i++;

同理，還有i- -可以遞減i的數值。但是++與- -可以選擇為prefix operator或postfix operator，視其寫在變數
的前面或後面而定。放在前面，例如++i，會先遞增i的數值，然後再傳回新的i的數值；但寫在後面，例
如i++則會先傳回i現有的數值，然後才將i的值遞增。

考慮以下的程式碼，想想看輸出的結果為何？

i=1;
cout << ++i << endl;
cout << i << endl;
cout << i++ << endl;
cout << i << endl;

Last update: 2019/07/02 15:01 cpp:fromctocpp https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/14 00:57

3.5.5 sizeof運算子

sizeof運算子可以計算型態或變數等的記憶體空間，其用法有二：在sizeof後接一組括號並在其中放置要計
算空間的對象，或者直接在sizeof後放置欲計算空間的對象(無須括號)，請參考下例：

using namespace std;
#include <iostream>

int main()
{
 char *month[]= {"January", "February", "March", "April", "May", "June",
 "July", "August", "September", "October", "November", "December" };

 cout << "Size of char type = " << sizeof(char) << " byte." << endl;
 cout << "Size of month array = " << sizeof month << " bytes." << endl;

 return 0;
}

3.5.6 關係運算子

關係運算子是一個二元的運算子，用以判斷兩個運算元(數值、函式、變數或運算式)之間的關係，其可能
的關係有﹕大於、小於、等於、或不等於。C/C++語言提供以下的關係運算子，如table 3：

符號 範例 意義

> a > b a 是否大於 b
< a < b a 是否小於 b
>= a >= b a 是否大於或等於 b
<= a <= b a 是否小於或等於 b
Tab. 3: Relational Operators

雖然我們已經提過：C/C++語言將數值0視為false，並將其它所有非0的數值視為true。但關係運算子會以數
值0代表運算結果為false，以數值1代表true。還要注意關係運算子較算術運算子的優先順序低，所以像是 x
+ y < i - j 等同於 (x + y) < (i - j)。在C/C++語言中，x < y < z等同於 (x < y) < z，因為關係運算子為左
關聯。假設x=1, y=3, z=5： x<y<z ⇒ (x < y) <z ⇒ 1 < z ⇒ 1。要注意的是C++已提供了bool型態，因此
也可以直接使用true或false來代表運算的結果。

3.5.7 相等運算子

相等運算子是一個binary運算子，用以判斷兩個運算元(數值、函式、變數或運算式)之值是否相等。C/C++
語言提供以下的關係運算子，如table 4：

符號 範例 意義

== a == b a 是否等於 b
!= a != b a 是否不等於 b
Tab. 4: Equality Operators

https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp#tab_relationaloperators
https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp#tab_equalityoperators

2026/01/14 00:57 15/21 3. C++基礎語法

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

同樣地，相等運算子會以數值0代表運算結果為false，以數值1代表true。還要注意相等運算子與關係運算子
一樣，其優先順序都較算術運算子來得低。

<note important>是 == ， 不是 = 。 千萬不要將比較兩數是否相等的==寫成=，這實在是一個常常會遇到
的錯誤!建議您以後如果遇到程式執行結果錯誤，但找不出任何問題時，試試檢查一下所有的 = 與 ==，有
很高的機會可以改正您的程式。</note>

3.5.8 邏輯運算子/Logical Operator

邏輯運算子共有以下三種，如table 5：

符號 意義 unary or binary
! NOT unary
&& AND binary
|| OR binary
Tab. 5: Logical Operators

其運算結果請參考table 6的真值表：

X Y NOT X X AND Y X OR Y
0 0

1
0 0

0 1 0 1
1 0

0
0 1

1 1 1 1
Tab. 6: Truth Table

假設變數score代表c語言的修課成績，以下的邏輯運算即為檢查成績是否介於0~100：

((score >= 0) && (score <=100))

3.5.9 條件運算子

C/C++語言還有提供一種特別的運算子，稱為條件運算子(conditional operator)，可依條件決定運算式的
傳回值，其語法如下：

expression1 ? expression2 : expression3

運算式的運算結果expression1的值為true(非0的數值)或false(數值0)而定，當expression1為true時，傳
回expression2的值；否則當expression1為false時，傳回expression3的值。事實上，這等同於下面的if敘
述：

https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp#tab_logicaloperators
https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp#tab_truthtable

Last update: 2019/07/02 15:01 cpp:fromctocpp https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/14 00:57

if (expression1)
 result = expression2;
else
 result = expression3;

條件式敘述有可能是因為像「如果expression為真則⋯. 否則⋯.」這樣的述敘，在程式中出現的機會很高
的緣故吧！請參考以下的應用：

int x=1, y=2, z;
if(x>y)
 z=x;
else
 z=y;

上面這段程式碼是令z為x與y兩者中較大的值，如果以條件運算式改寫，則只要寫成

z= x>y ? x: y;

即可，是不是簡化很多？下面這行程式，假設score為學生成績，則可以簡單地檢查score是否大於100，若
超過100則以100分計。

score = score > 100 ? 100 : score ;

3.5.10 優先順序與關聯性

我們將C/C++的運算子之優先順序與關聯性彙整於table 7

運算子 符號

一元運算子 +(正)、-(負)、++、--、!(NOT)、sizeof
算術運算子(乘除) *、/、%
算術運算子(加減) +、-
關係運算子 >=、<=、>、<
相等運算子 ==、!=
邏輯運算子 &&、||
條件運算子 ?:
指定運算子 =、*=、/=、%=、+=、-=
Tab. 7: 各運算子的優先順序(由高至低)

3.6 條件式敘述

C++與C語言一樣，提供了兩種條件式敘述：if與switch，其用法與C語言並無二致，在此不予贅述。

https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp#tab_precedence

2026/01/14 00:57 17/21 3. C++基礎語法

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

3.7 迴圈

C++與C語言一樣，提供了for、while、do while等迴圈敘述，其用法與C語言並無二致，在此不予贅述。

3.8 陣列

C++與C語言一樣，提供了陣列用以管理相同型態的資料，其用法與C語言並無二致，在此不予贅述。

3.9 函式

C++與C語言一樣，提供了函式(function)，其用法與C語言大致相同，但C++允許函式的引數可以有預設
的數值:

using namespace std;
#include <iostream>

double test (double a, double b = 7)
{
 return a - b;
}

int main ()
{
 cout << test (14, 5) << endl; // Displays 14 - 5
 cout << test (14) << endl; // Displays 14 - 7

 return 0;
}

3.10 指標

C++與C語言一樣，提供了指標以存取特定的記憶體位址，其用法與C語言並無二致，在此不予贅述。

3.11 參考(Reference)變數

C++讓我們可以為某個變數，建立一個副本。

using namespace std;
#include <iostream>

Last update: 2019/07/02 15:01 cpp:fromctocpp https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/14 00:57

int main ()
{
 double a = 3.1415927;

 double &b = a; // b is a

 b = 89;

 cout << "a contains: " << a << endl; // Displays 89.

 return 0;
}

在上述範例中，b被稱為參考變數(reference variable)，我們在宣告b時，使用&b=a來讓b成為a的分身。要
注意的是，一但宣告後，不可以再改變其參考的對象。

參考變數也可以用在函式的引數宣告，例如下面的程式碼：

using namespace std;
#include <iostream>

void change (double &r, double s)
{
 r = 100;
 s = 200;
}

int main ()
{
 double k, m;

 k = 3;
 m = 4;

 change (k, m);

 cout << k << ", " << m << endl; // Displays 100, 4.

 return 0;
}

下面則是以指標的方式，將前述程式再實作一次：

using namespace std;
#include <iostream>

void change (double *r, double s)

2026/01/14 00:57 19/21 3. C++基礎語法

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

{
 *r = 100;
 s = 200;
}

int main ()
{
 double k, m;

 k = 3;
 m = 4;

 change (&k, m);

 cout << k << ", " << m << endl; // Displays 100, 4.

 return 0;
}

下面的程式則又複雜了一點：

using namespace std;
#include <iostream>

double &biggest (double &r, double &s)
{
 if (r > s) return r;
 else return s;
}

int main ()
{
 double k = 3;
 double m = 7;

 cout << "k: " << k << endl; // Displays 3
 cout << "m: " << m << endl; // Displays 7
 cout << endl;

 biggest (k, m) = 10;

 cout << "k: " << k << endl; // Displays 3
 cout << "m: " << m << endl; // Displays 10
 cout << endl;

 biggest (k, m) ++;

 cout << "k: " << k << endl; // Displays 3

Last update: 2019/07/02 15:01 cpp:fromctocpp https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/14 00:57

 cout << "m: " << m << endl; // Displays 11
 cout << endl;

 return 0;
}

這個程式蠻有趣的吧！

3.12 try catch

try與catch的機制，可以讓我們在try的程式區塊中，throw結果給catch區塊處理，請參考下面的程式：

using namespace std;
#include <iostream>
#include <cmath>

int main ()
{
 int a, b;

 cout << "Type a number: ";
 cin >> a;
 cout << endl;

 try
 {
 if (a > 100) throw 100;
 if (a < 10) throw 10;
 throw a / 3;
 }
 catch (int result)
 {
 cout << "Result is: " << result << endl;
 b = result + 1;
 }

 cout << "b contains: " << b << endl;

 cout << endl;

 // another example of exception use:

 char zero [] = "zero";
 char pair [] = "pair";
 char notprime [] = "not prime";
 char prime [] = "prime";

 try

2026/01/14 00:57 21/21 3. C++基礎語法

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

 {
 if (a == 0) throw zero;
 if ((a / 2) * 2 == a) throw pair;
 for (int i = 3; i <= sqrt (a); i++)
 {
 if ((a / i) * i == a) throw notprime;
 }
 throw prime;
 }
 catch (char *conclusion)
 {
 cout << "The number you typed is "<< conclusion << endl;
 }

 cout << endl;

 return 0;
}

From:
https://junwu.nptu.edu.tw/dokuwiki/ - Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

Permanent link:
https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp

Last update: 2019/07/02 15:01

https://junwu.nptu.edu.tw/dokuwiki/
https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:fromctocpp

	3. C++基礎語法
	3.1 標準輸入與輸出
	3.2 命名空間與函式標頭檔
	3.3 變數與常數
	3.3.1 變數
	3.3.2 常數
	3.3.3 新的變數初始值給定方式

	3.4 資料型態
	3.4.1 整數型態
	3.4.2 浮點數
	3.4.3 字元型態
	3.4.4 布林型態
	3.4.5 資料型態轉換

	3.5 運算子
	3.5.1 算術運算子
	3.5.2 指定運算子
	3.5.3 複合指定運算子
	3.5.4 遞增與遞減運算子
	3.5.5 sizeof運算子
	3.5.6 關係運算子
	3.5.7 相等運算子
	3.5.8 邏輯運算子/Logical Operator
	3.5.9 條件運算子
	3.5.10 優先順序與關聯性

	3.6 條件式敘述
	3.7 迴圈
	3.8 陣列
	3.9 函式
	3.10 指標
	3.11 參考(Reference)變數
	3.12 try catch

