
2026/02/19 21:32 1/9 8. 迴圈Loop

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

國立屏東商業技術學院 資訊工程系 物件導向程式設計

8. 迴圈Loop

while loop
do while loop
for loop
comma expression
exiting from a loop
break; continue; goto;
null statement;

在C/C++語言中，也有所謂的Loop，我們稱之為迴圈，用以重複地執行特定的程式碼。請參考figure 1，一
個迴圈通常使用一組大括號將一些程式敘述包裹起來，並且反複地執行，直到特定的條件成立或不成立為
止。判斷是否繼續執行的地方，可以在迴圈區塊的開頭處或是結束處，視所使用的loop敘述而定。本章
將C語言所支援的loop敘述分別加以介紹。

Fig. 1

8.1 while迴圈

while敘述的語法如下：

while (controlling_expression) statements

while敘述先判斷controlling_expression的值，若為true則一直執行後續的statement，直

https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:loops#img_loop1

Last update: 2019/07/02 15:01 cpp:loops https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:loops

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/02/19 21:32

到controlling_expression的值為false時才結束。

<note important>

while迴圈可包含一行或一行以上的敘述

在語法上我們寫statements，指得是「敘述群」，意即一個或一個以上的敘述，我們可以使用一組大括號
將敘述包裹起來。但是當敘述超過一行時，該組大括號為必須。因此

while(i>0)
 i--;

與

while(i>0)
{
 i--;
}

以及

while(i>0)
{
 i--;
 cout << "i=" << i << endl;
}

都是正確的while敘述。以下我們不再重複statements的意義。

</note>

所以，while迴圈中的敘述可能會被執行0次到無限多次，視其controlling_expression的值而定。以下是一
些例子：

// 計算1+2+3+...+10的結果
int i=1, sum=0;

//執行十次
while(i<=10)
{
 sum+=i;
 i++;
}
cout << "sum of 1 to 10 is " << sum << endl;

// 印出介於1到100間可以被7整除的數字
int i=1;

while(i<=100)
{

2026/02/19 21:32 3/9 8. 迴圈Loop

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

 if(i%7==0)
 cout << i ;
 i++;
}

<note important>C語言使用數值0表示false，其它非0的數值皆為true!</note>

// 反覆執行直到使用者輸入'q'為止
int quit=0;
char c;

while(!quit)
{
 // do something
 ...
 cout << "continue?(y/n)";
 scanf("%c", &c);
 if(c=='n')
 quit=1;
}

// 反覆執行直到使用者輸入'q'為止
int quit=0;
char c;

while(1)
{
 // do something
 ...
 if(expression)
 break; //直到特定條件成立時，使用break跳離
}

8.1.1 無窮迴圈(infinite loop)

有時，不小心設定while的controlling_expression，其結果會導致程式永遠無法結束，因為不論在各種情況
下，controlling_expression永遠為true。我們將這種情況稱為無窮迴圈(infinite loop)，例如：

// 反覆執行直到使用者輸入'q'為止
int quit=0;
char c;

while(i=100) //這裡將i==100寫成了i=100
{

http://www.opengroup.org/onlinepubs/009695399/functions/scanf.html

Last update: 2019/07/02 15:01 cpp:loops https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:loops

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/02/19 21:32

 // do something
 ...
 if(expression)
 i=100; //直到特定條件成立時，將i設定為100
}

<note important> 若真的遇到此種情況，在Linux/Unix系統請使用Ctrl+C將程式跳離，然後使用ps aux指
令查看程式的PID，再以kill -9 PID指令將程式的執行中止掉。 </note>

8.2 do迴圈

do敘述的語法如下：

do statements while (controlling_expression);

do迴圈與while迴圈類似，不同之處在於其判斷是否繼續之處位於exiting point。do敘述執行statements，
然後才判斷接在while後面的controlling_expression的值，若為true則繼續回到do迴圈開頭處再次執行；
若controlling_expression的值為false時，do迴圈才結束。相較於while迴圈，do迴圈內含的statements至
少會被執行一次。以下是一些例子：

i=10;

do
{
 cout << i << endl;
 i--;
} while (i>0);

i=10;

do
{
 cout << i << endl;
} while (--i>0);

i=10;

do
{

2026/02/19 21:32 5/9 8. 迴圈Loop

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

 cout << i << endl;
} while (i-- > 0);

8.3 for迴圈

for敘述的語法如下：

for (expression1; expression2; expression3) statements

其中expression1、expression2與expression3，分別是用以定義迴圈的初始條件、中止條件與更新(update)
的處理，說明如下：

expression1在迴圈初次執行前被執行，用以設定初始條件，例如i=0

expression2在迴圈每次執行前加以檢查，視其值決定是否繼續執行，若其值為true則繼續，反之若
其值為false則結束。例如i<10

expression3在迴圈每次執行完時加以執行，用以更新在expression1或expression2中的運算元的值，
例如i++

我們可以用while的語法，來將for的語法改寫如下：

expression1;
while (expression2)
{
 statements
 expression3;
}

以下是一些例子：

int i,sum=0;

for(i=1;i<=10;i++)
{
 sum+=i;
}
cout << "sum=" << sum << endl;

在expression1與expression3中也可以用','同時指定多個運算式，例如:

Last update: 2019/07/02 15:01 cpp:loops https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:loops

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/02/19 21:32

int i,sum;

for(i=1, sum=0;i<=10;i++)
{
 sum+=i;
}
cout << "sum=" << sum << endl;

expression1-3也可以被省略，例如:

int i=0;

for(; i<10;i++)
 cout << "i=" << i << endl;

8.4 巢狀迴圈(nested loop)

一個迴圈內如含有另一個迴圈，則稱之為，巢狀迴圈(nested loop)。每一層的迴圈可以是for、while或do其
中一個，以下我們僅以for迴圈為例，其它的組合您可以自行學習。

//印出1!+2!+3! + ... + 10!
int i,j,temp,sum=0;

for(i=1;i<=10;i++)
{
 temp=0;

 for(j=1; j<=i; j++)
 {
 temp*=j;
 }

 sum += temp;
}

cout << "sum=" << sum << endl;

請思考以下問題：

第6行的temp=0可不可以省略？
可以併入第4行，寫做「for(i=1, temp=0; i⇐10; i++」嗎？
同理，第2行的sum=0也可以併入嗎？

//印出1!+2!+3! + ... + 10!
int i,j,temp=1,sum=0;

2026/02/19 21:32 7/9 8. 迴圈Loop

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

for(i=1;i<=10;i++)
{
 temp*=i;
 sum += temp;
}

cout << "sum=" << sum << endl;

8.5 從迴圈中跳離

除了使用迴圈的controlling_expression來控制迴圈的執行外，我們還可以使用break、continue與goto敘述
來改變程式的動線，使其可以跳離迴圈所屬的程式區塊。

8.5.1 break敘述

break在迴圈中一旦被執行，則在此次迴圈執行過程中剩下還未執行的敘述就會被跳過不執行，並且結束
迴圈的執行。當迴圈的中止條件不在開頭或結尾時，break敘述就便得很有用處，例如：

//反覆要求使用者輸入一個整數，並且將其累加，直到使用者輸入0為止

int n, sum=0;

for(;;)
{
 printf("Please input a number (0 for quit):");
 scanf("%d", &n);
 if(n==0)
 break;
 sum+=n;
}
printf("sum=%d.\n", sum);

8.5.2 continue敘述

continue則和break相反，它並不會結束迴圈的執行，而是省略當次執行時未完成的程式碼，直接執行迴
圈的下一回合。

//反覆要求使用者輸入一個整數，並且將其累加，直到使用者輸入0為止，但輸入值若為負數則加以忽略

int n, sum=0;

for(;;)

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/scanf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2019/07/02 15:01 cpp:loops https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:loops

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/02/19 21:32

{
 printf("Please input a number (0 for quit):");
 scanf("%d", &n);
 if(n==0)
 break;
 if(n<0)
 continue;
 sum+=n;
 // continue敘述使程式碼跳到了這裡
}
printf("sum=%d.\n", sum);

8.5.3 goto敘述

C/C++語言還提供另一種無條件的跳躍敘述 – goto敘述。我們可以在程式碼中的特定位置標記一些label，
其方法為在某行以標記名稱後接冒號的方式來定義，爾後需要改變程式碼執行動線時，則使用goto 標記名
稱;的方式即可完成。請參考以下的範例：

//反覆要求使用者輸入一個整數，並且將其累加，直到使用者輸入0為止

 int n, sum=0;

 for(;;)
 {
 printf("Please input a number (0 for quit):");
 scanf("%d", &n);
 if(n==0)
 goto done;
 sum+=n;
 }

done:
 printf("sum=%d.\n", sum);

goto敘述不一定要配合迴圈的使用，例如:

h goto.c

#include <stdio.h>

int main()
{
char cmd;

begin:

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/scanf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/scanf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/02/19 21:32 9/9 8. 迴圈Loop

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

 scanf("%c", &cmd);

 if(cmd != 'q')
 goto begin;

 printf("exit\n");
}

這個程式讓使用者不斷地輸入一個字元，直到其輸入字元為'q'時才結束程式。其中第7行定義了一個名
為begin的標記，在第11行的if敘述若條件成立時則使用goto敘述跳躍到begin標記處。

<note tip> 許多程式設計師一直在爭論是否該在程式碼中使用goto，正反兩面的意見都值得參考。我覺得
如果您覺得好用就用吧？只是每次使用時也順便想一想：同樣的功能如果不使用goto可以做到嗎？以免以
後你不用goto就不會寫程式！我所認識的程式設計師裡面，兩種人都有，不過反對使用goto的人，通常完
全容不下在程式中使用goto。如果你擔心以後工作上的主管或同事不喜歡你寫的含有goto的程式，那你最
好用與不用都會寫，這樣就沒問題了！ 不要使用goto </note>

From:
https://junwu.nptu.edu.tw/dokuwiki/ - Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

Permanent link:
https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:loops

Last update: 2019/07/02 15:01

https://www.google.com/search?q=%E4%B8%8D%E8%A6%81%E4%BD%BF%E7%94%A8goto
https://www.google.com/search?q=%E4%B8%8D%E8%A6%81%E4%BD%BF%E7%94%A8goto
https://www.google.com/search?q=%E4%B8%8D%E8%A6%81%E4%BD%BF%E7%94%A8goto
https://junwu.nptu.edu.tw/dokuwiki/
https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:loops

	8. 迴圈Loop
	8.1 while迴圈
	8.1.1 無窮迴圈(infinite loop)

	8.2 do迴圈
	8.3 for迴圈
	8.4 巢狀迴圈(nested loop)
	8.5 從迴圈中跳離
	8.5.1 break敘述
	8.5.2 continue敘述
	8.5.3 goto敘述

