
2026/01/19 15:23 1/13 20. 運算子重載

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

國立屏東大學 資訊工程學系 物件導向程式設計

20. 運算子重載

重載(overloading)是指同樣名稱的成員函式可以擁有多個版本，而運算子重載，則是允許我們對運算元定
義自己的運算子版本。

20.1 可重載的運算子

可重載的運算子如表table 1:

+ - * / % ^ & | ~ ! , =
< > < = > = ++ - - < < > > == != && ||
+= -= /= %= ^= &= |= *= < < = > > = [] ()
- > - >* new new[] delete delete[]
Tab. 1: 可重載的運算子列表

table 2則是不可被重載的運算子:

: : . * . ?:
Tab. 2: 不能被重載的運算子列表

20.2 運算子重載的語法與語意規則

C++語言規定內建資料型態的運算子是不可以被重載的，因此，在重載運算子時，相關的運算元至
少要有一個是自定的型態或類別。
運算子的優先順序、結合律(左關聯或右關聯)是固定不變的。

運算子重載是以函式宣告的方式來進行，其語法如下：

ReturnType operatorOP (type op1[, type op2]?);

其中OP是要重載的運算元，op1與op2則是運算元，ReturnType是計算後傳回值的型態。下面是一個例子：

#include <iostream>
using namespace std;

struct Point
{
 int x;
 int y;

https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:operatoroverloading#tab_tab1
https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:operatoroverloading#tab_tab2

Last update: 2022/05/20 01:36 cpp:operatoroverloading https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:operatoroverloading

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/19 15:23

};

Point operator+(Point p1, Point p2)
{
 Point p;
 p.x = p1.x + p2.x;
 p.y = p1.y + p2.y;
 return p;
}

int main()
{
 Point px={5,6}, py={7,8};
 Point pz;

 pz = px+py;

 cout << "(" << pz.x << "," << pz.y << ")\n";
 return 0;
}

在上例中，我們設計了一個加法的運算子重載，用以處理「Point + Point」這種運算，其中p1與p2為運算元，
傳回值則為一個「Point」類別的物件。為了要減少「傳值(call by value)所需的複製」，也可以改成「call by
reference」：

Point operator+(Point &p1, Point &p2)
{
 Point p;
 p.x = p1.x + p2.x;
 p.y = p1.y + p2.y;
 return p;
}

通常，若運算子本身只是以其值進行運算，並不會在函式中改變其值，因此，還可以改寫如下：

Point operator+(const Point &p1, const Point &p2)
{
 Point p;
 p.x = p1.x + p2.x;
 p.y = p1.y + p2.y;
 return p;
}

若是要進行例如「++」或「+=」這一類的運算時，其運算的傳回值為運算元本身，例如「x+=5」，其意涵
為「x = x + 5」，我們必須以x+5的值做為x的值，所以x不但是傳入的參數(運算元之一)，同時也是傳回值

2026/01/19 15:23 3/13 20. 運算子重載

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

所要存放的地方。請參考下面的程式碼：

Point & operator+=(Point &p1, const Point &p2)
{
 p1.x+=p2.x;
 p1.y+=p2.y;
 return p1;
}

看了幾個例子後，現在讓我們試著重載「< <」好讓輸出變得更容易。換言之，我們可以使用「cout « p1;」，
這種方式來輸出。注意到這個敘述，其中「< <」為運算子，而「cout」與「p1」則為運算元。下面是一個重
載的例子：

void operator<<(ostream &out, Point &p)
{
 out << "(" << p.x << "," << p.y << ")";
}

注意：一般我們用以輸出的「cout」是ostream類別的物件。

執行看看「cout < < p1;」與「cout < < p1 < < endl;」，看看有什麼差別？

為了要讓後續其它的「 < <」也能正確地處理，我們將其改為：

ostream & operator<<(ostream &out, Point &p)
{
 out << "(" << p.x << "," << p.y << ")";
 return out;
}

如此一來，「cout < < p1 < < endl;」就會先執行「cout < < p1」並傳回一個「cout」再進行「cout < < endl;」

20.3 類別的運算子重載

現在讓我們將上面的例子，改以類別方式實作，

#include <iostream>
using namespace std;

class Point

Last update: 2022/05/20 01:36 cpp:operatoroverloading https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:operatoroverloading

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/19 15:23

{
public:
 int x;
 int y;
};

ostream & operator<<(ostream &out, Point &p)
{
 out << "(" << p.x << "," << p.y << ")";
 return out;
}

Point & operator+=(Point &p1, const Point &p2)
{
 p1.x+=p2.x;
 p1.y+=p2.y;
 return p1;
}

Point operator+(const Point &p1, const Point &p2)
{
 Point p;
 p.x = p1.x + p2.x;
 p.y = p1.y + p2.y;
 return p;
}

int main()
{
 Point px={5,6}, py={7,8};
 Point pz;

 pz = px+py;

 cout << "(" << pz.x << "," << pz.y << ")\n";
 pz+=px;

 cout << "(" << pz.x << "," << pz.y << ")\n";
 cout << pz << endl;

 return 0;
}

有沒有發現，其實除了將「struct」改成「class」外，並沒有其它的修改。這是因為原本所設計的這些運算子
重載函式都是以一般的函式來實作，但類別可以改成以成員函式方式實作：

#include <iostream>
using namespace std;

2026/01/19 15:23 5/13 20. 運算子重載

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

class Point
{
public:
 int x;
 int y;

 Point & operator+=(const Point &p)
 {
 x+=p.x;
 y+=p.y;
 return *this;
 }

 Point operator+(const Point &p)
 {
 Point newp;
 newp.x = x + p.x;
 newp.y = y + p.y;
 return newp;
 }
};

int main()
{
 Point px={5,6}, py={7,8};
 Point pz;

 pz = px+py;

 cout << "(" << pz.x << "," << pz.y << ")\n";

 pz+=px;

 cout << "(" << pz.x << "," << pz.y << ")\n";

 return 0;
}

要注意的是，當以成員函式實作運算子重載時，其參數部份已隱含了一個「看不見的參數」，也就是「this」
指標，它會做為「隱形的」第一個參數，所以上述的程式中，其運算子重載的函式之參數都較結構體版本
的少了一個參數。

但是，如果我們要實作「<<」的重載，若「this」做為第一個參數，這就會帶來問題，例如：

ostream & operator<<(ostream &out)
 {
 out << "(" << x << "," << y << ")";
 return out;

Last update: 2022/05/20 01:36 cpp:operatoroverloading https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:operatoroverloading

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/19 15:23

 }

由於「this」是第一個參數，「out」是第二個參數，當我們執行「cout « p1;」時，就會遇到型態不相符的問題，
事實上這樣的重載，其支援的使用方式為「p1 « cout;」，這似乎沒有意義。因此，我們必須將之改以非成員
函式的方式來實作：

#include <iostream>
using namespace std;

class Point
{
public:
 int x;
 int y;

 Point & operator+=(const Point &p)
 {
 x+=p.x;
 y+=p.y;
 return *this;
 }

 Point operator+(const Point &p)
 {
 Point newp;
 newp.x = x + p.x;
 newp.y = y + p.y;
 return newp;
 }
};

ostream & operator<<(ostream &out, Point &p)
{
 out << "(" << p.x << "," << p.y << ")";
 return out;
}

int main()
{
 Point px={5,6}, py={7,8};
 Point pz;

 pz = px+py;
 cout << "(" << pz.x << "," << pz.y << ")\n";

 pz+=px;

 cout << "(" << pz.x << "," << pz.y << ")\n";

2026/01/19 15:23 7/13 20. 運算子重載

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

 cout << pz << endl;

 return 0;
}

下面則是關於「>>」的實作:

istream & operator>>(istream &in, Point &p)
{
 in >> p.x >> p.y ;
 if(!in)
 p.x=p.y=0;
 return in;
}

20.4 前置與後置運算子重載

假設要重載「++」這樣的運算子，還有一個問題必須處理，那就是如何區分前置與後置？例如：「i++」 與
「++i」的差異。關於此點，C++使用不同的函式原型來區分:

//前置

Point & operator++(Point &p)
{
 p.x++;
 p.y++;
 return p;
}

//後置
Point & operator++(Point &p, int)
{
 p.x++;
 p.y++;
 return p;
}

20.5 問題討論

以point4.cpp為例

Last update: 2022/05/20 01:36 cpp:operatoroverloading https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:operatoroverloading

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/19 15:23

#include <iostream>
using namespace std;

class Point
{
public:
 int x;
 int y;

 Point & operator+=(const Point &p)
 {
 x+=p.x;
 y+=p.y;
 return *this;
 }

 Point operator+(const Point &p)
 {
 Point newp;
 newp.x = x + p.x;
 newp.y = y + p.y;
 return newp;
 }
};

istream & operator>>(istream &in, Point &p)
{
 in >> p.x >> p.y ;
 if(!in)
 p.x=p.y=0;
 return in;
}

ostream & operator<<(ostream &out, Point &p)
{
 out << "(" << p.x << "," << p.y << ")";
 return out;
}

int main()
{
 Point px={5,6}, py={7,8};
 Point pz;

 pz = px+py;

 cout << "(" << pz.x << "," << pz.y << ")\n";

 pz+=px;

2026/01/19 15:23 9/13 20. 運算子重載

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

 cout << "(" << pz.x << "," << pz.y << ")\n";
 cout << pz << endl;

 cin >> pz;
 cout << pz;

 return 0;
}

如果我們在main()函式中，使用「cout << px + py << endl;」，那麼在編譯時就會遇到錯誤。其原因在於
「+」與「<<」這兩個運算子重載必須一致，例如，以下的兩種方式，都可以解決上述的問題。

 Point operator+(const Point &p)
 {
 Point newp;
 newp.x = x + p.x;
 newp.y = y + p.y;
 return newp;
 };

ostream & operator<<(ostream &out, Point p)
{
 out << "(" << p.x << "," << p.y << ")";
 return out;
}

或是

Point & operator+(const Point &p)
 {
 Point *newp=new Point;
 newp->x = x + p.x;
 newp->y = y + p.y;
 return *newp;
 };

ostream & operator<<(ostream &out, Point &p)
{
 out << "(" << p.x << "," << p.y << ")";
 return out;
}

Last update: 2022/05/20 01:36 cpp:operatoroverloading https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:operatoroverloading

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/19 15:23

#include <iostream>
using namespace std;

class Point
{
public:
 int x;
 int y;

 Point & operator+=(const Point &p)
 {
 x+=p.x;
 y+=p.y;
 return *this;
 };

 Point & operator+(const Point &p)
 {
 Point *newp=new Point;
 newp->x = x + p.x;
 newp->y = y + p.y;
 return *newp;
 };
};

istream & operator>>(istream &in, Point &p)
{
 in >> p.x >> p.y ;
 if(!in)
 p.x=p.y=0;
 return in;
}
/*
void operator<<(ostream &out, Point p)
{
 out << "("<< p.x << "," << p.y << ")";
}
*/
ostream & operator<<(ostream &out, Point p)
{
 out << "(" << p.x << "," << p.y << ")";
 return out;
}
int main()
{
 Point px={5,6}, py={7,8};
 Point pz;

 pz = px+py;

2026/01/19 15:23 11/13 20. 運算子重載

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

 cout << "(" << pz.x << "," << pz.y << ")\n";

 pz+=px;

 cout << "(" << pz.x << "," << pz.y << ")\n";

 cout << pz << endl;

 cout << "----" << endl;
 cin >> pz;

 cout << pz+px;
 return 0;
}

20.6 friend函式

本章為了方便討論起見，將Point類別的資料成員皆暫時宣告為「public」。現在讓我們將其改回「private」，
請參考下面的片段：

class Point
{
private:
 int x;
 int y;
...

編譯後發現許多錯誤，分別是：

因為資料成員變成私有的(private)，所以物件初始值的給定不能再用「={}」，必須要改成用建構函
式進行。
在main函式中有些使用到x或y的程式碼，必須改掉
但仍然在「< <」與「> >」的重載上遇到存取私有資料成員的問題

前面已經討論過，這兩個重載函式必須定義成為非成員函式(也就是一般函式)，但如此一來，就讓其無法
使用Point類別的私有資料成員。下面的方法是在Point類別的宣告中，將這兩個重載函式定義為Point之友，
那就可以讓它們存取其私有資料成員了：

 friend istream & operator>>(istream &in, Point &p);
 friend ostream & operator<<(ostream &out, Point p);

Last update: 2022/05/20 01:36 cpp:operatoroverloading https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:operatoroverloading

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/19 15:23

#include <iostream>
using namespace std;

class Point
{
private:
 int x;
 int y;

public:
 Point(){};
 Point(int x, int y)
 {
 this->x=x;
 this->y=y;
 };

 Point & operator+=(const Point &p)
 {
 x+=p.x;
 y+=p.y;
 return *this;
 };
 Point & operator+(const Point &p)
 {
 Point *newp=new Point;
 newp->x = x + p.x;
 newp->y = y + p.y;
 return *newp;
 };
/*
 Point operator+(const Point &p)
 {
 Point newp;
 newp.x = x + p.x;
 newp.y = y + p.y;
 return newp;
 };
*/
 friend istream & operator>>(istream &in, Point &p);
 friend ostream & operator<<(ostream &out, Point p);
};

istream & operator>>(istream &in, Point &p)
{
 in >> p.x >> p.y ;
 if(!in)
 p.x=p.y=0;
 return in;
}

2026/01/19 15:23 13/13 20. 運算子重載

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

ostream & operator<<(ostream &out, Point p)
{
 out << "(" << p.x << "," << p.y << ")";
 return out;
}

int main()
{

 Point px(5,6), py(7,8);
 Point pz;

 pz = px+py;

 cout << pz << endl;

 pz+=px;

 cout << pz << endl;

 cin >> pz;
 cout << pz+px;

 return 0;
}

From:
https://junwu.nptu.edu.tw/dokuwiki/ - Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

Permanent link:
https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:operatoroverloading

Last update: 2022/05/20 01:36

https://junwu.nptu.edu.tw/dokuwiki/
https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cpp:operatoroverloading

	20. 運算子重載
	20.1 可重載的運算子
	20.2 運算子重載的語法與語意規則
	20.3 類別的運算子重載
	20.4 前置與後置運算子重載
	20.5 問題討論
	20.6 friend函式

