
2026/02/06 10:08 1/12 8. 迴圈

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

國立屏東大學 資訊工程學系 C++程式設計入門教材

8. 迴圈

Chicago的捷運系統自1892年起開始營運(不過它還不是世界上最早的捷運系統，London的捷運自1863年起
就開始營運了)，目前共有八條路線，大部份路線為高架或地面路線。Chicago的市中心被稱為路普區，這
是因為當捷運從四面八方進入市區後，會以環狀的方式繞行市中心一圈後離開；從早到晚，這種不斷有捷
運繞圈運行的路線，讓市中心漸漸地被人稱為Loop區(中譯為路普區) — 意思就是一直在繞圈圈的地方。

迴圈(Loop)也是程式設計三種基本組成結構之一，可以讓程式碼依特定的條件重複地執行。一個迴圈通常
使用一組大括號將一些程式敘述包裹起來，並且可以重複地執行，直到特定的條件成立或不成立為止。這
些被包裹起來被重複執行的程式碼被稱為迴圈主體(Loop Body)；其用以判斷迴圈是否要繼續執行的條件，
則稱為測試條件(Test Condition)，通常是一個運算結果必須為布林值(true或false)的邏輯運算式(Logical
Expression)。至於判斷是否繼續執行的地方，可以在迴圈區塊的進入點(Entry Point，意即開頭處)或是離開
點(Exit Point，意即結束處)，視所使用的迴圈敘述而定。

C++語言支援三種迴圈敘述，同樣都可以讓特定的程式碼重複執行，只是其進入點、離開點與或測試條件
的位置與語法不同而已。本章將先從while迴圈敘述開始介紹C++語言所支援的迴圈敘述，後續再針對do
while與for迴圈敘述加以說明。

8.1 while迴圈

8.1.1 語法

while迴圈敘述可讓特定的程式碼反覆執行，直到特定條件不成立為止，其語法如下：

while迴圈敘述語法

while (測試條件) 敘述 | { 敘述* }

while敘述先判斷「測試條件」的值，若為true則會執行後續的一行敘述，或是由一組大括號所包裹起來的
多行敘述，直到「測試條件」的值為false時才結束。我們將while迴圈所要重複執行的一行或多行敘述，
稱為其「迴圈主體(Loop Body)」，在while迴圈執行時，依據「測試條件」的布林結果，其迴圈主體可能一
次都不執行(第一次進入迴圈時，其測試條件就為false)，或是可無限次數的執行下去(每次測試都為true)。
請參考figure 1，它將while迴圈執行時的過程以流程圖加以表達。

https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cppbook:ch-loop#img_fig_whilesyntax

Last update: 2024/01/12 07:38 cppbook:ch-loop https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cppbook:ch-loop

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/02/06 10:08

Fig. 1: while迴圈運作流程

以下三個例子都是讓while迴圈重複執行多次，直到變數i的數值不再大於0為止，只不過其迴圈主體所包含
的程式敘述不盡相同而已：

int i=5;
while(i>0) //迴圈主體只有一行敘述
 cout << i--; //輸出i的數值後將它遞減1

int i=5;
while(i>0) // 迴圈主體使用一組大括號包裹起來，但裡面仍只有一行敘述
{
 cout << i--; // 輸出i的數值後將它遞減1
}

int i=5;
while(i>0) // 迴圈主體使用一組大括號包裹起來
{
 cout << i; // 輸出i的數值後將它遞減1
 i--; // 輸出i的數值後將它遞減1
}

上述的三個程式，它們的執行結果都是相同的：

54321

8.1.2 應用範例

以下是一些while迴圈的應用範例：

2026/02/06 10:08 3/12 8. 迴圈

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

// 計算1+2+3+...+10的結果
int i=1, sum=0;

//執行十次
while(i<=10)
{
 sum+=i;
 i++;
}
cout << "sum of 1 to 10 is " << sum << endl;

// 印出介於1到100間可以被7整除的數字
int i=1;

while(i<=100)
{
 if(i%7==0)
 cout << i << endl;
 i++;
}

// 反覆執行直到使用者輸入'q'為止
bool quit=false; //宣告quit變數，其初始值false表示"沒有要"離開程式的執行
char c;

while(!quit)
{
 // do something
 ...
 cout << "Continue?(y/n)";
 cin >> c;
 if(c=='n')
 quit=true;
}

8.1.3 無窮迴圈(infinite loop)

不正確的使用迴圈有可能會發生測試條件永遠成立(意即永遠都為true)的情況，其結果將會使得迴圈永遠
不會結束其執行 — 我們將此種情況稱為無窮迴圈(Infinite Loop)。以下幾個例子，是在迴圈主體裡沒有能夠
改變「測試條件」的程式碼，使得迴圈永無止境地不斷執行：

int i=5;

Last update: 2024/01/12 07:38 cppbook:ch-loop https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cppbook:ch-loop

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/02/06 10:08

while(i>0) // 迴圈主體使用一組大括號包裹起來
{
 cout << i; // 輸出i的數值後將它遞減1
 // 忘了寫i--去改變其數值，因此其測試條件i>0將永遠成立
}

int i=5;
while(i>0) // 迴圈主體使用一組大括號包裹起來
{
 cout << i; // 輸出i的數值後將它遞減1
 i++; // 把遞減錯寫為遞增，因此其測試條件i>0將永遠成立
}

// 反覆執行直到使用者輸入'q'為止
bool quit=false;
char c;
int count=0;

while(quit=false) //只要quit的值為false就繼續執行，但此處不小心將quit==false寫成
了quit=false
{
 // do something
 ...
 if(expression) //若特定條件成立則將quit變數設為true，表示要離開程式的執行
 quit=true;
}

注意：發生無窮迴圈該怎麼讓程式停止執行？

使用Ctrl+C將程式跳離（Mac OS系統請使用Control+C），然後在Linux/Mac OS系統可
以使用ps aux指令查看程式的PID，再以kill -9 PID指令將程式從系統中移除。至
於Windows系統，則可以使用tasklist指令查看程式的PID，再以taskkill /PID -t指令將
程式從系統移除。

8.2 do while迴圈

do while迴圈敘述和while迴圈是類似的，都適用於在特定條件滿足以前，不斷重複執行迴圈主體的一種結
構；但不同於while迴圈在進入點(開始執行迴圈時)進行「測試條件」的判讀，do while迴圈是在每次完成
迴圈主體的執行後才進行測試條件的判讀 — 若判斷結果為true則繼續回到do while迴圈開頭處再次執行；
相反地，若測試條件的結果為false時，do while迴圈就會結束。

2026/02/06 10:08 5/12 8. 迴圈

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

8.2.1 語法

do while迴圈的語法如下：

do while迴圈敘述語法

do 敘述 | { 敘述* } while(測試條件);

相較於while迴圈，由於do while迴圈測試條件是在迴圈主體結束後才加以檢查，所以其迴圈主體內容至少
會被執行一次；反之，while迴圈在測試條件不成立的情況下，其迴圈主體有可能一次都沒有執行。請參
考figure 2，它將do while迴圈的運作過程以流程圖加以表達。

Fig. 2: do while迴圈運作流程

別忘了在do while迴圈後的分號

與while迴圈不同的是，依語法do while迴圈最後面必須加上一個分號做為結尾。但
可能是受到while迴圈的影響，很多人在寫程式時，都忘了要為do while迴圈加上分
號。

8.2.2 應用範例

以下是一些例子：

//輸出10..9..8..7..6..5..4..3..2..1
int i=10;

do
{
 cout << i << ".." ;

https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cppbook:ch-loop#img_fig_dowhilesyntax

Last update: 2024/01/12 07:38 cppbook:ch-loop https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cppbook:ch-loop

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/02/06 10:08

 i--;
} while (i>0);
cout << endl;

//輸出10..9..8..7..6..5..4..3..2..1
int i=10;

do
{
 cout << i << "..";
} while (--i>0);
cout << endl;

// 讓使用者重複輸入一個代表分數的整數，直到其值介於0~100為止
int score;
do
{
 cout << "Please input a score (between 0 to 100): ";
 cin >> score;
} while((score<0) || (score>100));
...

這個程式片段在許多應用中都可以看到，其作用是限制使用者只能輸入特定範圍的數值，其執行結果可參
考如下：

Please input a score (between 0 to 100): -5⏎
Please input a score (between 0 to 100): 111⏎
Please input a score (between 0 to 100): 66⏎

下面這個程式會要反覆地要求使用者輸入兩個整數a與b，直a可以被b整除為止:

int a, b;
do
{
 cout << "Please input two integers: ";
 cin >> a >> b;
} while((a%b)!=0);

其執行結果如下：

Please input two integers: 3 5⏎
Please input two integers: 13 5⏎
Please input two integers: 13 15⏎

2026/02/06 10:08 7/12 8. 迴圈

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

Please input two integers: 23 5⏎
Please input two integers: 400 20⏎

8.3 for迴圈

for迴圈是C++語言所支援的第三種迴圈結構，但它與前兩者(也就是while與do while迴圈)比較不同，通
常for迴圈的執行必須搭配一個用以控制迴圈執行次數的迴圈變數(Loop Variable，亦稱為迭代變數Iteration
Variable)，在運行時先使用初始化敘述(Initialization Statement)對迴圈變數進行初始化的動作，然後開始
進行迴圈的測試條件(Test Condition)判斷(通常此測試條件也與迴圈變數相關)，若結果為true則進入迴圈
主體(Loop Body)執行，若結果為false則結束迴圈；每次迴圈主體執行完後，還必須使用更新敘述(Update
Statement)對迴圈變數執行更新的動作，請參考figure 3的流程圖。

Fig. 3: for迴圈運作流程

8.3.1 語法

for敘述的語法如下：

for迴圈敘述語法

for (初始化敘述; 測試條件; 更新敘述) 敘述 | { 敘述* }

其中初始化敘述、測試條件與更新敘述，分別是用以定義迴圈的初始條件、中止條件與更新的處理；要注
意的是，其初始條件、中止條件與更新通常都是針對迴圈變數所設計。以下分別加以說明：

初始化敘述：在迴圈初次執行前被執行，通常用以設定迴圈變數的初始值。

https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cppbook:ch-loop#img_fig_forsyntax

Last update: 2024/01/12 07:38 cppbook:ch-loop https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cppbook:ch-loop

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/02/06 10:08

測試條件：在迴圈每次執行前加以檢查，視其值決定是否繼續執行；若其值為true則繼續，反之若
其值為false則結束。此測試條件為一個邏輯運算式，其中通常包含有迴圈變數做為其運算元之一。
更新敘述：在迴圈主體每次被執行完後加以執行，通常是用來更新迴圈變數的值。

for迴圈可以轉換為等價的while迴圈

基本上for迴圈與while迴圈是可以互相轉換的，例如我們可以使用while的語法來
將for的語法加以改寫：

初始化敘述;
while(測試條件)
{
 敘述 | { 敘述* }
 更新敘述;
}

8.3.2 應用範例

以下是一些應用範例：

int i,sum=0;

for(i=1;i<=10;i++)
{
 sum+=i;
}
cout << "sum=" << sum << endl;

我們也可以在初始化敘述與更新敘述裡，使用逗號運算子','用來同時指定多個運算式，例如:

int i,sum;

for(i=1, sum=0;i<=10;i++)
{
 sum+=i;
}
cout << "sum=" << sum << endl;

甚至初始化敘述與更新敘述也可以被省略，例如:

2026/02/06 10:08 9/12 8. 迴圈

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

int i=0;

for(; i<10;i++)
 cout << "i=" << i << endl;

8.4 巢狀迴圈

一個迴圈內如含有另一個迴圈，則稱之為，巢狀迴圈(Nested Loop)。每一層的迴圈可以是for、while或do
while其中任一個，以下我們僅以for迴圈為例，其它的組合您可以自行代換。

請參考以下的範例，它使用一個迴圈讓變數i從1執行到10，再用一個內層的迴圈計算i的階乘並把計算出來
的階乘值加總：

//印出1!+2!+3! + ... + 10!
int i,j,temp,sum=0;

for(i=1;i<=10;i++)
{
 temp=1;
 for(j=1; j<=i; j++)
 {
 temp*=j;
 }
 sum += temp;
}

cout << "sum=" << sum << endl;

請思考以下問題：

第6行的temp=1可不可以省略？
可以把第6行併入第4行，寫做「for(i=1, temp=0; i⇐10; i++」嗎？
同理，第2行的sum=0也可以併入嗎？

其實要計算1到10的階乘的和並不一定要使用雙層的巢狀迴圈。下面這個範例僅使用了一個迴圈，就完成
了1到10的階乘和之計算：

//印出1!+2!+3! + ... + 10!
int i,j,temp=1,sum=0;

for(i=1;i<=10;i++)
{
 temp*=i;
 sum += temp;

Last update: 2024/01/12 07:38 cppbook:ch-loop https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cppbook:ch-loop

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/02/06 10:08

}
cout << "sum=" << sum << endl;

動動腦，自己試著把這個程式看懂吧！

8.5 從迴圈中跳離

除了使用迴圈的測試條件來控制迴圈的執行外，我們還可以使用break、continue與goto敘述來改變程式的
動線，使其可以跳離迴圈所屬的程式區塊。

8.5.1 break敘述

我們可以在迴圈主體裡使用break敘述來跳離迴圈。在迴圈主體中的break敘述一旦被執行，則在此次迴圈
執行過程中剩餘還未執行的敘述就會被跳過不執行，並且結束迴圈的執行。當迴圈的中止條件不在開頭或
結尾時，break敘述就便得很有用處，例如：

//反覆要求使用者輸入一個整數，並且將其累加，直到使用者輸入0為止

int n, sum=0;

for(;;)
{
 cout << "Please input a number (0 for quit):";
 cin >> n;
 if(n==0)
 break;
 sum+=n;
}
cout << "sum=" << sum << endl;

再看看另一個範例：

while(true) // 測試條件直接寫成布林值true，所以此迴圈會不斷地執行
{
 // do something
 ...
 if(expression) //直到特定條件成立時，使用break跳離
 break;
}

2026/02/06 10:08 11/12 8. 迴圈

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

8.5.2 continue敘述

continue則和break相反，它並不會結束迴圈的執行，而是省略當次執行時未完成的程式碼，直接執行迴
圈的下一回合。

//反覆要求使用者輸入一個整數，並且將其累加，直到使用者輸入0為止，但輸入值若為負數則加以忽略

int n, sum=0;

for(;;)
{
 cout << "Please input a number (0 for quit):";
 cin >> n;
 if(n==0)
 break;
 if(n<0)
 continue;
 sum+=n;
 // continue敘述使程式碼跳到了這裡
}
cout << "sum=" << sum << endl;

8.5.3 goto敘述

C++語言還提供另一種無條件的跳躍敘述 – goto敘述。我們可以在程式碼中的特定位置標記一些標
籤(Label)，其方法為在某行以標記名稱後接冒號的方式來定義，爾後需要改變程式碼執行動線時，則使
用goto 標記名稱;的方式即可完成。請參考以下的範例：

//反覆要求使用者輸入一個整數，並且將其累加，直到使用者輸入0為止

 int n, sum=0;

 for(;;)
 {
 cout << "Please input a number (0 for quit):";
 cint >> n;
 if(n==0)
 goto done;
 sum+=n;
 }

done:
 cout << "sum=" << sum << endl;

Last update: 2024/01/12 07:38 cppbook:ch-loop https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cppbook:ch-loop

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/02/06 10:08

goto敘述不一定要配合迴圈的使用，例如:

int main()
{
char cmd;

begin:

 cin >> cmd;

 if(cmd != 'q')
 goto begin;
 cout << "Exit" << endl;
}

這個程式讓使用者不斷地輸入一個字元，直到其輸入字元為'q'時才結束程式。其中定義了一個名為begin
的標記，在後續的if敘述裡，若其測試條件成立則使用goto敘述跳躍到begin標記處。

許多程式設計師一直在爭論是否該在程式碼中使用goto，正反兩面的意見都值得參考。
我覺得如果您覺得好用就用吧？只是每次使用時也順便想一想：同樣的功能如果不使
用goto可以做到嗎？以免以後你不用goto就不會寫程式！我所認識的程式設計師裡面，
兩種人都有，不過反對使用goto的人，通常完全容不下在程式中使用goto。如果你擔
心以後工作上的主管或同事不喜歡你寫的含有goto的程式，那你最好用與不用都會寫，
這樣就沒問題了！

From:
https://junwu.nptu.edu.tw/dokuwiki/ - Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

Permanent link:
https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cppbook:ch-loop

Last update: 2024/01/12 07:38

https://junwu.nptu.edu.tw/dokuwiki/
https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=cppbook:ch-loop

	8. 迴圈
	8.1 while迴圈
	8.1.1 語法
	8.1.2 應用範例
	8.1.3 無窮迴圈(infinite loop)

	8.2 do while迴圈
	8.2.1 語法
	8.2.2 應用範例

	8.3 for迴圈
	8.3.1 語法
	8.3.2 應用範例

	8.4 巢狀迴圈
	8.5 從迴圈中跳離
	8.5.1 break敘述
	8.5.2 continue敘述
	8.5.3 goto敘述

