
2026/01/14 00:45 1/10 14. Inheritance and Overriding

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

國立屏東大學 資訊工程學系 物件導向程式設計

14. Inheritance and Overriding

Inheritance(繼承性)是指讓某一類別的物件繼承來自其它類別的屬性與行為。C++支援多重繼承，讓一個
類別可以繼承多個類別；但Java語言僅支援單一繼承，這只得其成為較為簡單的語言，對初學者來說，是
一件讓人輕鬆的事。不過Java也可以單一繼承、多重實作的方式，來達成多重繼承的效果。

14.1 IS-A relationship

「A is a kind of B.」

繼承性其實就是所謂的ISA關係 – IS-A relationship，是指兩個類別A與B間存在著：A類別就是B類別的一種
特殊化。所謂的「特殊化(specialization)」是指A類別其實就是B類別，但A類別比B類別特殊些。我們將A
類別稱為子類別，B類別則稱為父類別; 在Java語言的術語，則分別稱為sub class與super class。

回顧我們在前一章開始介紹的Person類別，每個屬於這個類別的物件都會具有firstname, lastname等屬性，
以及showInfo()的行為。

public class Person
{
 // field declarations
 private String firstname;
 private String lastname;

 Person()
 {
 firstname="unknown";
 lastname="unknown";
 }

 Person(String f, String l)
 {
 firstname=f;
 lastname=l;
 }

 // method declarations
 public void showInfo()
 {
 System.out.println("Name: " + firstname + " " + lastname);
 }

 public void setFirstname(String f) { firstname = f; }

Last update: 2024/09/11 11:21 java:inheritance https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=java:inheritance

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/14 00:45

 public void setLastname(String l) { lastname = l;}
 public String getFirstname() {return firstname;}
 public String getLastname() {return lastname;}

}

STUScoreMan.Student

如果我們要設計一個學生成績管理系統(Student Score Management System, STUScoreMan)，在我們所要
建構的物件導向世界中，必然會存在有「學生」這種類別的物件。那要如何開始設計學生這個類別呢？先
考慮學生只需具備姓名與學號兩個屬性，那麼我們可以撰寫以下的程式碼：

class Student
{
 // field declarations
 String firstName;
 String lastName;
 String ID;

 // constructors
 ...
 // method delcarations
 ...
}

就如同前一章所介紹的，我們還應該為這個類別加上建構子、顯示學生資料的method、設定存取權限、設
計setters與getters…。我們發現這個新設計的Student類別，與Person類別很相似⋯.

「Student也是一種Person，只是比較特別！比起Person，Student還多了ID(目前為止)。」

以這樣的角度看問題時，我們可以說「Student is a kind of Person!」。我們可以用以下的程式碼，告訴電腦
這件事：

class Student extends Person { }

「extends」是Java的keywords之一，用以表示Student類別是「延伸自」Person類別，換句話說，Student類
別要繼承Person類別。

在這個ISA的繼承關係中，我們將Person類別稱為「父類別(super class)」，Student類別則稱為「子類
別(sub class)」。

一旦你完成這樣的設計，儘管現在在Student類別中，一行程式碼都還沒寫，但Person類別該有
的，Student類別也都會有，包含Person類別的屬性與行為。因此，我們可以在物件導向的世界中，
把Student類別的物件視為是Person類別的物件，並且使用它所公開(public)的屬性與行為。請參考下面的
程式碼：

public class test {

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/14 00:45 3/10 14. Inheritance and Overriding

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

 public static void main(String[] args) {
 Student amy;
 amy = new Student();
 amy.setFirstname("Amy");
 amy.setLastname("Wang");
 amy.showInfo();
 }
}

沒有意外地，其執行結果如下：

Name: Amy Wang

但這不是我們要的結果，雖然Student已經是a kind of Person，但Student不夠特殊，它跟Person根本是一
樣的。讓我們將新的屬性與行為加到Student類別中，請參考下面的程式碼：

public class Student extends Person
{
 // fields
 private String ID;

 // contructors
 Student()
 {
 setFirstname("unknown");
 setLastname ("unknown");
 ID = "unknown";
 }

 Student(String f, String l, String i)
 {
 setFirstname(f);
 setLastname(l);
 ID = i;
 }
 // methods
 public void setID(String id) { ID=id; }
 public String getID() { return ID; }
}

在Person.java中，firstname與lastname是定義為private，所以連子類別都不能使用，必須透過其setters
與getters才能存取。

讓我們為這個小節做個總結：

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last update: 2024/09/11 11:21 java:inheritance https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=java:inheritance

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/14 00:45

「Student IS A (kind of) Person」

在Java語言裡，使用extends這個keyword來完成的ISA繼承關係，子類別(subclass)可以繼承父類別(super
class)所有的屬性與行為，除了那些被定義為私有的(private)。

14.1.1 instanceof

如果在程式執行時，我們想知道某個物件是屬於何種類別，那可以使用instanceof運算子。

System.out.println(amy instanceof Person);
System.out.println(amy instanceof Student);

其輸出結果為：

true
true

instanceof運算傳回的是boolean值，表示amy這個物件是Person類別的實體，同時它也是Student類別的
實體。

14.2 this and super

14.2.1 this

在類別定義理，「this」表示自己這個類別。我們可以將其建構子改寫如下：

 Student()
 {
 // 等於呼叫Student("unknown", "unknown", "unknown");
 this("unknown", "unknown", "unknown");
 }

 Student(String f, String l, String i)
 {
 setFirstname(f);
 setLastname(l);
 ID = i;
 }

14.2.2 super

在類別定義裡，「super」表示自己所繼承的父類別(super class)。我們可以將其建構子改寫如下：

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/14 00:45 5/10 14. Inheritance and Overriding

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

 Student()
 {
 // 等於呼叫Student("unknown", "unknown", "unknown");
 this("unknown", "unknown", "unknown");
 }

 Student(String f, String l, String i)
 {
 super(f,l); // 等於去呼叫父類別的Person(f,l)
 ID = i;
 }

14.3 Overriding (覆載)

STUScoreMan.Teacher

再舉一個例子，同樣針對這個STUScoreMan，我們還需要設計一個名為Teacher的類別。每個老師當然會
有姓名，以及「一項」專長(當然只是假設啦，我們有些老師連廚師證照都有呢！)。首先，我們針對專長
的部份，設計一個列舉型別，如下：

public enum Expertise
{
 Java, OS, Database, Algorithms, Networking
}

接著透過同樣透過�繼承Person來快速地完成Teacher類別的設計：

public class Teacher extends Person
{
 private Expertise expertise;

 Teacher()
 {
 this("unknown","unknown", null);
 }

 Teacher(String f, String l, Expertise exp)
 {
 super(f,l);
 expertise = exp;
 }

 public void setExpertise(Expertise exp) { expertise = exp; }
 public Expertise getExpertise() { return expertise; }

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last update: 2024/09/11 11:21 java:inheritance https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=java:inheritance

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/14 00:45

}

可是當我們使用以下這行來宣告並產生一個Teacher類別的物件實體時：

Teacher junwu = new Teacher("Jun", "Wu", Expertise.Java);

若呼叫「junwu.showInfo()」，我們只會得到這位老師的姓名，並沒有其它資訊。所以我們將在Teacher.java
中加入以下的method:

 public void showInfo()
 {
 super.showInfo();
 System.out.print("Expertise: ");
 switch(expertise)
 {
 case Java:
 System.out.println("Java Programming");
 break;
 case OS:
 case Database:
 case Algorithm:
 case Networking:
 System.out.println("something interesting");
 }
 }

在ISA的繼承關係中，若sub class定義與super class相同的method，就稱為「Overriding」，意即提供新的版
本供sub class類別使用。若是要呼叫原本super class類別中的method時，可以使用super.XXX()方式達成，
例如「super.showInfo()」，就是呼叫其所繼承的super類別的showInfo() method，其結果可以輸出其姓名；
然後我們再進一步將其專長輸出。

Overriding常用於提供不同於super class的method版本，畢竟ISA是一種特殊化的關係，sub class與super
class十分相同，也繼承了來自super class的一切定義與宣告，可是可以針對自己的特殊性，定義自己
的method。由於是做同一件事情，所以我們使用同樣的method名稱，以符合「真實世界」的通則(當然，
這也是一種簡化，否則我們可能要提供showTeacherInfo()這種命名，如此會使得不同class對同一件事情
的操作方法不同)。修改後完整的程式碼如下：

public class Teacher extends Person
{
 private Expertise expertise;

 Teacher()
 {
 this("unknown","unknown", null);
 }

 Teacher(String f, String l, Expertise exp)

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system

2026/01/14 00:45 7/10 14. Inheritance and Overriding

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

 {
 super(f,l);
 expertise = exp;
 }

 public void setExpertise(Expertise exp) { expertise = exp; }
 public Expertise getExpertise() { return expertise; }

 public void showInfo()
 {
 super.showInfo();
 System.out.print("Expertise: ");
 switch(expertise)
 {
 case Java:
 System.out.println("Java Programming");
 break;
 case OS:
 case Database:
 case Algorithm:
 case Networking:
 System.out.println("something interesting");
 }
 }
}

要覆載一個Mthod必須遵守以下的規則：

新Method的引數列必須與要覆載的對象一致。
新Method的傳回型態必須與要覆載的對象一致或是其子型態。
新Method的存取限制不可以比原先還要更嚴格。
被宣告為final的method不可以被overridden。
Constructors不可以被overridden。

14.4 HAS-A relationship

「A has a B」

類別間的HAS-A關係是指某類別包含有其它類別。例如「A has a B」，如此一來，在A類別的程式碼中，還可
以透過其擁有的B類別的物件，去使用B類別所定義的屬性或行為。

回顧我們所要設計的一個學生成績管理系統(Student Score Management System, STUScoreMan)，假設一
個學生，只能修一門課，那麼在我們所要建構的物件導向世界中，必然會存在有「學生」這種類別的物件，
以及「課程」類別的物件。

我們先設計一個課程的類別如下(其中包含有授課教師的資料):

Last update: 2024/09/11 11:21 java:inheritance https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=java:inheritance

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/14 00:45

public class Course
{
 private String courseName;
 private String classroom;
 private Teacher teacher; // Here is a HAS-A relationship

 Course()
 {
 this("unknown", null, "unknown");
 }

 Course(String cn, Teacher t, String cr)
 {
 courseName = cn;
 teacher = t;
 classroom = cr;
 }

 public void showInfo()
 {
 System.out.println("Course Name:" + courseName);
 System.out.println("Teacher: ");
 teacher.showInfo();
 System.out.println("Classroom: " + classroom);
 }

 public String getCourseName()
 {
 return courseName;
 }

}

我們也將Student.java進行部份的修改，加上「一個學生只能修一門課」的假設，以及將showInfo()加
以overriding，其程式碼如下：

public class Student extends Person
{
 // fields
 private String ID;
 private Course course; // Here is a HAS-A relationship

 // contructors
 Student()
 {
 this("unknown","unknown","unknown"); //改成用this
 ID = "unknown";
 }

2026/01/14 00:45 9/10 14. Inheritance and Overriding

Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

 - https://junwu.nptu.edu.tw/dokuwiki/

 Student(String f, String l, String i)
 {
 super(f,l);
 ID = i;
 }
 // methods
 public void setID(String id) { ID=id; }
 public String getID() { return ID; }

 public void takeCourse(Course c)
 {
 course = c;
 }

 public void showInfo()
 {
 super.showInfo();
 if(course!=null)
 System.out.println("Course: " + course.getCourseName());
 }

}

這兩個類別中，都含有Has-A的關係，例如Course中的「private Teacher teacher;」與Student中的「private
Course course;」。

最後，讓我們設計一個Main類別，以便測試程式是否正確執行。

public class StudentScoreMan {

 public static void main(String[] args) {

 Student amy;
 amy = new Student();

 amy.setFirstname("Amy");
 amy.setLastname("Wang");
 amy.showInfo();

 System.out.println(amy instanceof Person);
 System.out.println(amy instanceof Student);

 Teacher junwu = new Teacher("Jun", "Wu", Expertise.Java);
 Course oop = new Course("Object-Oriented Programming", junwu,
"CC0802");
 junwu.showInfo();
 oop.showInfo();

Last update: 2024/09/11 11:21 java:inheritance https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=java:inheritance

https://junwu.nptu.edu.tw/dokuwiki/ Printed on 2026/01/14 00:45

 amy.takeCourse(oop);
 amy.showInfo();
 }
}

Name: Amy Wang
Name: Jun Wu
Expertise: Java Programming
Course Name:Object-Oriented Programming
Teacher:
Name: Jun Wu
Expertise: Java Programming
Classroom: CC0802
Name: Amy Wang
Course: Object-Oriented Programming

From:
https://junwu.nptu.edu.tw/dokuwiki/ - Jun Wu的教學網頁
國立屏東大學資訊工程學系
CSIE, NPTU

Permanent link:
https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=java:inheritance

Last update: 2024/09/11 11:21

https://junwu.nptu.edu.tw/dokuwiki/
https://junwu.nptu.edu.tw/dokuwiki/doku.php?id=java:inheritance

	14. Inheritance and Overriding
	14.1 IS-A relationship
	STUScoreMan.Student
	14.1.1 instanceof

	14.2 this and super
	14.2.1 this
	14.2.2 super

	14.3 Overriding (覆載)
	STUScoreMan.Teacher

	14.4 HAS-A relationship

